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Distortion of atoms around the neutral vacancy in a Si crystal
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Abstract. The single-particle electronic structure of a neutral lattice vacancy in a Si crystal is treated
theoretically within the 16-atom supercell using the conventional tight-binding approximation. The phys-
ical mechanism leading to a spontaneous symmetric and tetragonal displacement of atoms surrounding a
vacancy is discussed in detail. The elastic response of the lattice is calculated using the Keating valence
force model applied to the cluster contained 441 atoms. The directions and amplitudes of atomic displace-
ments are strongly symmetry-dependent. The amplitudes decrease with the distance R from the vacancy,
approximately, as R−2, independently of the distortion symmetry. The influence of the vacancy defects on
the lattice parameter is considered and estimated.

PACS. 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters –
71.55.Cn Elemental semiconductors

1 Introduction

The isolated lattice vacancy in silicon has been studied
extensively [1–10] as a prototype for vacancies in other
semiconductors. The properties of vacancy essentially de-
pend on the positions of the nearby atoms. These po-
sitions are different from those for the perfect crystal.
An example, which demonstrates the importance of re-
laxation of the nearby atoms is the neutral vacancy de-
fect. There is a competition between the Coulomb inter-
action of two electrons in the unfilled t2 level and the
interaction of these electrons with the lattice. In the ab-
sence of an electron-lattice interaction, the lowest term
would be 3T1 with the total spin S = 1 since it corre-
sponds to the lowest Coulomb repulsion energy. However,
due to the remarkable strength of electron-lattice interac-
tion (the Jahn-Teller tetragonal distortion) the resulting
lowest term has the total spin S = 0. Since there is no the
direct experimental evidence on the position of vacancy
neighbors the theoretical studies are of great importance.
In reference [3] the tetragonal type distortion was calcu-
lated by the Green’s function method while in reference [5]
this technique was used to determine the breathing type
distortion. In references [9,10] the molecular dynamics
technique was used to study the vacancy and vacancy-
hydrogen defects. There is large difference between the re-
sults of references [3,9,10] concerning the amplitude of the
tetragonal distortion. Therefore in this paper we present
the results of the distortion studies based on the conven-
tional tight binding technique. The method is easy in the
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application and the physical interpretation is very trans-
parent. Generally, our results are in agreement with those
obtained by the molecular dynamics method. We show
that both the breathing and the tetragonal distortion are
directed outward, with the amplitude of the tetragonal
distortion being smaller than that of the breathing distor-
tion. The more distant atoms also move due to the action
of the nearest-neighbor interatomic forces. We estimate to
which degree the defect-induced distortions influence the
measurement of the lattice parameter.

2 Methodology

To describe the relaxation around the vacancy site quan-
titatively we apply the Harrison theory [11] for the bond-
ing properties of tetrahedrally coordinated solids. In this
theory the total energy is expressed in terms of inter-
action between pairs of nearest neighbor atoms, i.e. in
terms of the bond energy. The electronic bond energies of
two sp3−sp3 hybrids directed against on two neighboring
atoms are given as [11]
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where the energy with the minus corresponds to the bond-
ing state. In (1) q = 2 is the number of electrons per bond,
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εα,βh = (εα,βs +3εα,βp )/4, where εs and εp are the free-atom

energies for s and p states [9]. V2 = 4.373~2/md2, with
m being an electron mass, determines the interaction be-
tween two sp3−sp3 hybrids [12]. The parameter k is only
one fitting coefficient entering this theory. The equilib-
rium distance d at zero temperature is determined from
the minimum of the Helmholtz free energy, i.e., from the
bond energy (1) supplemented by the zero-point stretch-
ing mode vibration energy for the Si–Si bond. Thus the
equation for the determination of d is given as [12]
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The third derivative of ε accounts for the anharmonic ef-
fect. From the requirement that calculated and experi-
mental bondlength are equal each other we find k = 1.455.
From equation (1) one can find the stretching-type vibra-
tion of atoms entering the bond. The frequency of the
stretching mode is ω =

√
kh/µ, where kh = ∂2ε/∂d2 is

the harmonic force constant and µ is the reduced mass.
For the Si bond we have obtained kh = 8.37 eV/Å2. This
value was obtained without involving any adjustable pa-
rameters and it will be used later for the determination of
the relaxation amplitude around the neutral vacancy. The
average vibrational energy is ~ω = 409 cm−1.

To describe the vacancy states in the Si crystal, we use
the 16-atom supercell (having the shape of the elementary
unit cell) with periodic boundary conditions. We take the
matrix elements at the vacancy site and the interaction
matrix elements with the nearest neighbors equal to zero.
Using a supercell of the same size for the perfect Si crystal,
we obtain the electronic levels at the Γ , L, and X points
in the Brillouin zone (see right side of Fig. 1) as they
result from conventional band-structure calculations. The
energy levels of the perfect and imperfect supercell have
the same common energy reference.

The electronic states of imperfect cluster were calcu-
lated for the perfect crystal atomic positions. However,
the system is unstable with respect to a symmetric dis-
placement (the breathing mode QA) and at least with
respect to one asymmetric displacement (Jahn-Teller dis-
tortion) of the neighboring atoms of a vacancy site. The
neutral vacancy ground state is an orbital triplet. The pos-
sible asymmetric distortions for an orbital triplet have T2

or E symmetry. The experimental results [1] show that
the asymmetric distortion is of E symmetry, and we will
therefore only consider this tetragonal distortion modeQE
which has two components Qu and Qv. The driving forces
to the new equilibrium position can be obtained by ex-
panding in powers of the normal modes Qi (i.e. QA and
QE) the potential due to the nearest neighbors of a va-
cancy site. For reasons of symmetry, the symmetric and
tetragonal distortions and their effects on the t2 vacancy
electronic state can be represented by the following equiv-

Fig. 1. One-electron energies of the a1 (dashed) and t2 (solid)
symmetry for a silicon supercell as a function of the vacancy
site-ligand interaction strength. The zero on the horizontal axis
reflects the situation that all matrix elements on a vacancy
site and interaction integrals with nearest neighbors disappear.
The one on this axis corresponds to perfect crystal states. We
show the corresponding evolution of the perfect crystal states
when the strength of interactions between the vacancy site and
nearest neighbor is reduced step by step. The vacancy band gap
state t2 occupied by two electrons arises mainly from the state
at the point Γ .

alent operator [14]

ε = −VAQAI +
kA

2
Q2
A + VE(QuUu +QvUv)

+
kE

2
(Q2

u +Q2
v), (3)

where VA and VE are the electron-lattice coupling coef-
ficients and kA and kE the force constants entering the
elastic energy terms associated with the corresponding
distortion. I is a unit matrix while Uu and Uv are elec-
tronic operators [14]. Because the operators Uu and Uv
are diagonal within the t2 functions, they are eigenstates
of (1) for arbitrary Qu and Qv. From equation (3) it fol-
lows that the breathing mode distortion reaches a stable
energy minimum at QA = VA/kA. The energy gain for
this distortion is EA = V 2

A/2kA. There are three equiv-
alent tetragonal distortions along each of the cubic axes.
Contrary to the breathing mode distortion, the tetragonal
distortion splits the t2 triplet into the lower singlet and the
upper doublet. In the Q space the stable distortion along
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Table 1. Comparison of calculated parameters by Baraff
et al. [3], Scheffler et al. [5], and those in this work for the
neutral vacancy in Si. ε(t2) is the position of the vacancy level
with respect to the valence band, kA, kE are the force constants
and QA, QE are the displacement coordinates for the breathing
and tetragonal distortion, respectively. Figures in brackets cor-
respond to situation without relaxation of more distant atoms
(see text).

Parameter [3] [5] this work

ε(t2), [eV] 0.7 0.76 0.74 (0.835)

kA, [eV/Å2] 7.5 29±12 7.19 (11.6)

kE , [eV/Å2] 14.8 - 26.9 (46.4)

QA, [Å] 0.1∗ 0.11 0.15 (0.093)

QE, [Å] 0.3 - 0.031 (0.018)
∗ Adopted by analogy with the (111) surface.

the z axis is at Qu = VE/kE and Qv = 0. The energy of
the singlet at this distortion is reduced by the Jahn-Teller
energy EJT = −V 2

E/2kE . When the coupling coefficients
VA(E) and the force constants kA(E) are known, it is pos-
sible to determine the distortions and the corresponding
stabilization energies.

3 Result of calculations

To find the electronic levels of the perfect Si supercell, we
use the interaction matrix elements of reference [13] in-
stead the matrix elements expressed in terms of the Har-
rison universal parameters η. We have slightly changed
the interaction matrix element given in [13] to fit bet-
ter the experimental energies at points Γ , L and X near
the region of the forbidden energy gap. They are: Vss =
−9.13 eV, Vsp = 3.46 eV, Vxx = 1.7 eV, and Vxy = 4.7 eV.
Thus the matrix elements partly account for more dis-
tant interaction. The diagonal matrix elements entering
the corresponding secular equation are the free atomic
eigenvalues (ε3s = −13.55 eV and ε3p = −6.52 eV). Fig-
ure 1 shows how the vacancy-occupied states arise from
perfect crystal states when the corresponding matrix ele-
ments are stepwise reduced. The result of our calculation
is that the one-electron localized level of t2 symmetry is
produced in the forbidden gap and a level of a1 symme-
try is created near the top of the valence band. The level
positions with respect to the valence band for the infi-
nite crystal are ε(t2) = 0.835 eV and ε(a1) = −0.48 eV.
The respective ε(t2) level position calculated in references
[3,5] are summarized in Table 1. The wave-function coef-
ficients γ2

i for each (111) neighbor nearest to the vacancy
are given in Table 2.

It can be seen that the localization of the wave function
on the four nearest atoms for the t2 and a1 states is 65%
and 67%, respectively. It was noted in reference [2] that
the γ2

x, γ2
y and γ2

z coefficients on a given near-neighbor
atom are not equal. If we consider the localized state to
be made up of “dangling” orbitals from the neighboring

Table 2. The wave-function coefficients γ2
i for each four near-

est neighbors of the vacancy.

a1 t2x t2y t2z

γ2
s 0.0511 0.0277 0.0277 0.0277

γ2
x 0.0387 0.1165 0.0097 0.0097

γ2
y 0.0387 0.0097 0.1165 0.0097

γ2
z 0.0387 0.0097 0.0097 0.1165

atoms, these orbitals do not point into the center of the
vacancy but are rather tilted in a somewhat different direc-
tion. This is not in agreement with the usual sp3 physical
chemist’s concept. We shall comment on this feature in
Section 5.

The Harrison theory predicts that matrix elements de-
pend on the interatomic distance as 1/d2. Imposing the
QA distortion on the four vacancy neighbors we find that
t2 gap level depends linearly on displacement. Hence, the
vacancy neighbors will move from their perfect crystal
equilibrium position. Imposing the same distortion on the
perfect supercell we find that s and p states at the point Γ
do not exhibit linear dependence on QA. This is so because
they are average of the electronic interaction energy taken
with the same weight over all pairs of atoms in the su-
percell. Due to the distortion QA some of the bondlength
elongates and some of them shortens and the energy terms
linear in displacements cancel each other. Thus the va-
cancy states originated from the states at the point Γ can
be used for the calculation of the electron-lattice coupling
coefficients VA. Taking into account that the t2 defect level
is occupied by 2 electrons we find from the slope of the av-
erage electronic energies VA = 1.08 eV/Å. The breathing
mode force constant is given as kA = 4kh/3 = 11.6 eV/Å2.
From equation (3) we find the radial displacement of the
vacancy neighbor equals to 0.093 Å.

Contrary to the symmetric distortion QA, the tetrago-
nal distortion QE influences only the p-type Γ state. The
t2 defect state is split by the tetragonal distortion into a
lower energy a1 state and a higher doublet e. We deter-
mined the slope VE of the a1 state with respect to the
average energies of the a1 and e states to ensure that the
trace of tetragonal distortion is equal zero. We found that
VE = −0.84 eV/Å. The force constant for the tetragonal
mode is kE = 16kh/3 = 46.4 eV/Å2. This leads to the
equilibrium geometry for the tetragonal distortion along
the z-axis at Qu = 0.018 Å and Qv = 0.

As it was already demonstrated in reference [3] the in-
clusion of the relaxation of more distant atoms reduces the
kA and kE force constants and, hence, affects the equilib-
rium position of four vacancy neighbors. In reference [3] kA
and kE were determined using the Keating valence-force
model [3,15] in which all interatomic forces are resolved
into nearest neighbor bond-stretching and bond-bending
forces. Two parameters entering this model are the bond-
stretching force constant (α = kh/3 = 2.9 eV/Å2) and
the bond-bending force constant β = 0.72 eV/Å2. We de-
termined the β from the fit to the phonon LA and LO
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dispersion curves (direction Γ−X). To obtain kA, the dis-
tortion QA was imposed on the four neighbor atoms near-
est to the vacancy. The other atoms were allowed to relax
freely until the elastic energy Et reaches the minimum.
Then the force constant is determined as kA = 2Et/Q

2
A.

In their calculation Baraff et al. [3] use a cluster contain-
ing a vacancy site and up to 10 atomic shells (99 atoms)
around the vacancy. We repeated their calculations tak-
ing a cluster containing a vacancy site and 21 atomic shells
(441 atoms). We obtained that kA is reduced due to relax-
ation by 38% and, thus the radial displacement of vacancy
neighbors increases up to 0.15 Å. The force constant for
the tetragonal mode with account for relaxation is reduced
by 42% and the corresponding equilibrium distortion is
Qu = 0.031 and Qv = 0 Å.

In Table 1 we compare the results of this calculation
with those in references [3,5]. In reference [5] the gradient
of the total energy on the four nearest neighbors of the
Si vacancy as a function of the breathing distortion was
calculated by self-consistent method. The long-range de-
formation energy was included via a semiempirical model
with parameters taken from reference [3]. Only the breath-
ing mode distortion was determined. In reference [3], the
breathing distortion was not determined. In analogy to
the Si(111) surface, an outward distortion of 0.1 Å was
assumed for the neutral vacancy. The tetragonal mode
distortion was directly calculated there by self-consistent
Green’s-function technique.

In recent molecular dynamic study of the vacancy-
hydrogen complexes in Si crystals [9,10] was calculated
the position of the four neighbors to the vacancy site us-
ing 64 atoms supercell. The determined there directly net
displacement of each Si atoms was 0.12 Å. Since vectors
of the breathing and tetragonal mode displacements are
perpendicular to each other and, in the linear electron-
lattice coupling approximation, the symmetric and the
asymmetric distortion takes place independently of each
other and simultaneously the net displacement is given
as Q =

√
Q2
A +Q2

E . Thus net displacement calculated in
references [9,10] is between our value Q = 0.095 Å when
only four atoms relax and the value 0.153 Å for the case
when relaxation of more distant is account for.

4 Defect-related relaxation and the lattice
parameter

A finite amount of energy is required to form a vacancy
so that a solid with vacancies has a higher internal en-
ergy than one without. One would therefore expect that,
in equilibrium, a solid would tend to become vacancy-free.
This is not so due to the “action” of entropy. At a finite
temperature T , the equilibrium state of a crystal is deter-
mined by minimizing the Gibbs free energy F = H − TS,
where H is the vacancy formation enthalpy and S is the
vacancy formation entropy. At equilibrium, the vacancy
concentration NV in the crystal is given by the expression

NV = NSie
S/k−H/kT , (4)

where NSi = 5.43 × 1022 cm−3 is the density of lattice
sites in Si and k is the Boltzmann constant. The vacancy
concentration increases as the temperature increases. This
is due to the fact that the vacancies increase the disorder
(the number of ways of selecting which atomic site will be
vacant). The increase in internal energy due to vacancies
is compensated for by the associated increase in entropy.
In reference [17], the formation enthalpy of the neutral
vacancy was determined from positron annihilation mea-
surements H = 3.6± 0.2 eV, and very rough estimations
yielded S/k in the range from 6 to 10. Using these values
(S/k = 6), equation (4) yields NV ≈ 7 × 10−36 cm−3 at
T = 300 K and NV ≈ 2 × 1013 cm−3 at T = 1500 K.
These estimations furnish remarkably smaller NV than
a detectable concentration of vacancies which was esti-
mated [18] to be of the order of 5×1015 cm−3 at T =
1220 K. The vacancy concentration predicted on thermo-
dynamics base is smaller than the vacancy concentration
caused by the technological process.

The knowledge of vacancy-induced lattice distortions
is very important for a more accurate determination of the
Avogadro constant from Si crystal properties. This opens
up possibilities of a new definition of the unit of mass, the
kilogram [19]. The Avogadro constant NA is expressed as
NA = M/ρv, where M is the molar mass, ρ the crystal
density and v the atomic volume. Each of these values
is determined by an independent measurement. Therefore
the knowledge of the atomic volume (hence a lattice pa-
rameter) is crucial for the determination of NA.

The electron-lattice interaction causes the volume
change of the atom cage around the vacancy site and it
influences the positions of more distant atoms. Figures 2
and 3 show the relative displacement amplitudes for the
breathing and for the tetragonal distortion modes, respec-
tively, as it was determined in Section 3. The displacement
amplitudes decay “radially”, approximately, as 1/R2. The
relaxation around the defect plays a similar role as elec-
tronic screening around a charged defect. The screening
effect reduces the extent of the electric field and similarly
the relaxation reduces the displacements of distant atoms
around the defect. The symmetric distortion mainly prop-
agates along zig-zag atomic chains. If the displacement of
each atom in the first shell is, say 0.1 Å then, as it is seen
in Figure 2, each atom in the second shell (atoms 6 to 17)
experiences displacement 0.4× 0.1 Å = 0.04 Å in a direc-
tion other than that of the first neighbors. The change of
the interatomic distance between atoms from the second
and the third shell is smaller than 0.1 − 0.04 = 0.096 Å
because the amplitudes should be projected along the line
connecting the particular atoms. In the case of the tetrag-
onal distortion, the particular atoms in a given shell can
show the different displacement amplitudes.

The influence of defects on the lattice parameter can be
measured in the X-ray lattice spacing comparator, where
the lattice parameter of unknown samples is measured
with respect to a reference crystal. When both sample
have a different interatomic distance d, the angular vari-
ation of the diffraction lines can be observed. The ratio
∆d/d can thus be measured with an accuracy of up to
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Fig. 2. (a) Relative displacement amplitudes of atoms in successive shells surrounding a vacancy. A breathing mode distortion
of amplitude 1 is imposed onto the four nearest neighbors, i.e. the (111) shells. All other atoms are allowed to relax freely within
the Keating force model with force constants α = 2.9 eV/Å2 and β = 0.72 eV/Å2. The largest displacement amplitude is along
zig-zag chains. (b) Relative relaxation amplitudes multiplied by R2, where R is the distance of the atoms from the vacancy. The
amplitudes decrease faster than R−2.

1.0×10−9 [20]. The Si crystal containing the point defects
(vacancies, impurities) can be considered as a strongly di-
lute alloy of foreign constituents among Si atoms. An ex-
ample of this is GexSi1−x, where x is the concentration
of the dissolved Ge atoms. The Bragg X-ray diffraction
averages the influence of foreign atoms on the lattice con-
stant over many diffraction surfaces. The average inter-
atomic distance dav between two atoms in alloy can be
determined statistically as

dav = x2d1 + 2x(1− x)d12 + (1− x)2d2, (5)

where x2 is the probability that two nearest lattice sites
are occupied by Ge atoms. Similarly, 2x(1−x) is the prob-
ability that two neighboring sites are pair Ge–Si or Si–Ge
atoms. Here, in the nearest-neighbor approximation, the
d1 is the equilibrium distance between Ge–Ge pairs in the
perfect Ge crystal and d2 is the distance between Si–Si
pairs in perfect Si crystal. d12 is the unknown distance
between Ge–Si pairs in alloy. Taking into account that
x = N1/N , where N1 is the number of Ge atoms dis-
tributed among N lattice sites in the Si crystal, the above
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Fig. 3. (a) Relative relaxation amplitudes of tetragonal distortion of amplitude 1 imposed on nearest vacancy neighbors along
the z-axis. Note that atoms within a given shell (except that of the four nearest neighbors) have different amplitudes. (b) Relative
relaxation amplitudes multiplied by R2, where R is the distance of the atoms from the vacancy. The amplitudes decrease faster
than R−2.

equation can be rewritten as

∆d

d2
N =

dav − d2

d2
N

= N1

(
d1 − 2d12 + d2

d2

N1

N
+ 2

d12 − d2

d2

)
. (6)

If in the last equation ∆d/d2 is determined by X-ray
diffraction, then d12 can be calculated directly. In such
an estimation, it will be sufficient to take into account
only the last term in brackets, i.e. 2(d12 − d2)/d2. The
other terms are small due to the factor N1/N . If d12 =
(d1 + d2)/2 is assumed then dav as given by equation (5)

depends linearly on the concentration x. This approxima-
tion is known as the Vegard rule.

Using the above equation, ∆d can be estimated for the
vacancy. We assume that vacancies exist as separate point
defects, i.e. d1 = 0, d12 = A + d2 and d2 = d = 2.36 Å.
Taking N1 = NV = 1015 and assuming A = 0.25 Å

∆d

d
=

2A

d

NV

NSi
≈ 4× 10−9 (7)

is obtained. The estimation based on equation (7) as-
sumes a homogeneous distribution of displacements (de-
formation) among atoms around a vacancy. This can
be seen in the following direct estimation. The relative
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deformation of a single bond length around a vacancy is
A/d. In crystal there are NSi/2 such single bonds and
NSi/2NV of them are related to one vacancy. Therefore the
average relative displacement is (A/d)/(NSi/2NV), and
this is the same result as those of equations (5–7).

Now we estimate the ∆d/d taking the relaxation into
account. We allow for the relaxation effect assuming that
in a crystal 1 cm3 in size the NV vacancies are distributed
homogeneously and that every vacancy with surrounding
atoms occupies a sphere of the radius RV which can be
determined from the condition 4πR3

V/3 = N−1
V . The av-

erage atomic displacement amplitude Ā within a sphere is
given as

Ā =
A
∫ RV

d
(d/r)2dV

(4/3)πR3
V

≈
3Ad2

R2
V

· (8)

The relative interatomic distance change is the ratio of the
average amplitude inside the sphere over the radius RV.
Assuming A = 0.25 Å we obtain

∆d

d
=

Ā

RV
= 4πAd2NV ≈ 2× 10−8. (9)

We see that a model allowing for relaxation gives larger
∆d/d than a model of homogeneous distribution of the
displacement amplitude A but Figures 2 and 3 show that
in reality, displacement amplitudes decrease a bit faster
than 1/R2. Therefore equation (9) gives upper limit of
the ∆d/d.

5 Discussion and conclusions

Messmer and Watkins [2] noted that localized t2 orbitals
do not point into the center of the vacancy because the
coefficients γ2

i by px, py and pz are not equal (see Tab. 2).
The tilt of t2 orbitals was explained by the close proximity
of the level to the valence-band edge. This question was
also briefly mentioned in reference [3]. We shall give a more
general explanation of this fact. The pointing of the defect
t2 orbitals into the center of the vacancy assumes expan-
sion of these orbitals in terms of the sp3 bond orbitals.
In tetrahedral coordinated lattices, the sp3 bond orbitals
are directed along lines between atoms. For example, the
sp3 orbital along (111) is sp3

(111) = (s + px + py + pz)/2,

and along (−1−11) it is sp3
(−1−11) = (s−px−py +pz)/2.

The average value of atomic Hamiltonian for any bond or-
bital is (ε3s+3ε3p)/4. They are orthogonal with respect to
themselves. However, there is one basic difference between
the s, px, py, pz functions and the sp3 bond orbitals. The
latter are not eigenfunctions of the atomic Hamiltonian
since the off-diagonal matrix element on a given atom, say
between sp3

(111) and sp3
(−1−11) is (ε3s− ε3p)/4. In an ordi-

nary tight-binding scheme (also based on the use of point
symmetry of particular atomic site), the atomic functions
are the basis for the perturbation calculation where the
perturbation are the interatomic integrals. The sp3 bond

orbitals cannot form such a basis because they have non-
zero off-diagonal matrix elements (zero-order matrix ele-
ments) on a given atomic site. Generally, the tight-binding
functions cannot be expressed as a linear combination of
sp3 bond orbitals since the latter are not eigenfunctions of
a zero-order atomic Hamiltonian. This explains, discussed
in reference [2], the tilt of the defect t2 orbitals from the
vacancy site direction. We note (see Tab. 2) that the a1

defect function contains equal portions of the px, py and pz
on the neighboring atoms. This follows from the symme-
try requirement and it does not imply that the a1 function
can be expressed in terms of sp3 orbitals.

In neutral vacancy defect problem we have competi-
tion between two interactions. One is the Coulomb repul-
sion between two electrons in the degenerate t2 orbitals,
the other is the electron-lattice interaction with breathing
and asymmetric modes. The two electrons can be shared
among t2 triplet components in a different way. This leads
to many electron terms. The lowest in energy is the term
3P with the total spin S = 1 and the orbital momentum
L = 1. The repulsion energy between two electrons in
this term is F0− 5F2, where Fi are the Slater parameters.
There are another two terms 1D and 1S with a total spin
S = 0, and their repulsion energy is F0+F2 and F0+10F2,
respectively. It was found experimentally [1] that neutral
vacancy is not active in magnetic resonance, i.e. the total
spin of the ground state is S = 0. Therefore, in such a case,
the energy gain due to coupling to the tetragonal mode
exceeds the Coulomb repulsion energy. This result can be
explained by the remarkable spatial extent of the t2 wave
function, 65% of which is located on the four Si neighbors
to the vacancy. The F2 integral which determines the rel-
ative energies between the terms is then strongly reduced.
The Coulomb correlation energy in such extended defect
like neutral vacancy is quenched by the electron-lattice
coupling. This is a reason why one-electron theory gives a
reasonable amplitude of the atomic displacements around
vacancy as well as the position of the vacancy level in
the energy gap. Recently [8], the parameter-free calcula-
tions were performed for the negatively charged Si va-
cancy. They supplied the breathing and the Jahn-Teller
distortions around vacant site and also confirmed the
validity of one-electron approximation for the extended
defect.

There is no confirmed knowledge of the displacement
amplitudes around the neutral vacancy. In reference [9]
was reported the net displacement 0.12 Å of four neigh-
bors without separation into the symmetric and tetrago-
nal displacements. Our value for the net displacement is
0.093 Å when more distant atoms relaxation is ignored
and 0.153 Å when it is accounted for. The tetragonal dis-
placement calculated in reference [3] (0.3 Å) is larger than
assumed there symmetric displacement (0.1 Å) and it is
larger an order of magnitude than our result (0.031 Å).
Such large tetragonal distortion implies that isolated neu-
tral vacancy is a very stable defect. However, on other
hand it is believed that neutral vacancies form the va-
cancy – hydrogen complexes [9,10]. In such a case the
hydrogen – Si atom bond is formed and the tetragonal
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distortion is remarkably quenched. In fact, the hydrogen
atom can induce rebonding where the sp3 bond is trans-
formed into one pz pointing to the vacancy position and
three sp2 bonds interacting with sp3 bonds on the second
shell. The calculated minimum energy of such sp2−sp3

bond interaction is obtained when vacancy neighbors are
displaced from theirs perfect crystal positions by 0.25 Å.
One of the hydrogen-related frequencies observed in in-
frared spectroscopy, 1838.3 cm−1 [16], can be explained
by the binding of hydrogen to the pz bond pointing to
the vacancy. For this frequency we obtained the value of
1835.1 cm−1 at 0 K.

There are two main directions of relaxation of atoms
around a neutral Si vacancy. The influence of the trigonal
distortion on the t2 state is similar to the effect of the
tetragonal distortion. Both distortions split the t2 level
into the singlet a1 and the doublet e. We have estimated
the electron-lattice coupling coefficient for the trigonal dis-
tortion. It is around three times smaller than the corre-
sponding coefficient for the tetragonal distortion. Since
the operator for trigonal coupling has no diagonal ele-
ments within the eigenstates of tetragonal distortion, the
trigonal distortion is quenched in the first order of pertur-
bation theory. The force constants kA and kE estimated
with regard to free relaxation are around 40% smaller
(see Tab. 1). Since bond stretching constant α = kh/3
is greater than bond bending constant β the stretching
forces are mainly responsible for the relaxation and, as a
result, the distortion diffuses along the zig-zag chains, pre-
serving a symmetry for a particular mode. We find that
the displacement amplitudes decrease with the distance
R from the vacancy site, approximately, as 1/R2. The re-
laxation around vacancies influence the lattice parameter.
The estimation of this influence is given by two indepen-
dent ways. A similar type of the displacements propaga-
tion was found for some substitutional defects [21]. Their
influence on the lattice parameter can be roughly esti-
mated using the results for the vacancy provided their
concentration is known with respect to the vacancies.
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